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Abstract

Numerous experiments and analyses of RNA structures have revealed that the local distinct structure closely correlates with the biological
function. In this study, we present a data mining approach to discover such unusual folding regions (UFRs) in genome sequences. Our
approach is a three-step procedure. During the first step, the quality of a local structure different from a random folding in a genomic sequence
is evaluated by two z-scores, significance score (SIGSCR) and stability score (STBSCR) of the local segment. The two scores are computed
by sliding a fixed window stepped a base along the sequence from the start to end position. Next, based on the non-central Student’s t
distribution theory we derive a linearly transformed non-central Student’s t distribution (LTNSTD) to describe the distribution of SIGSCR
and STBSCR computed in the sequence. In the third step, we extract these significant UFRs from the sequence whose SIGSCR and/or
STBSCR are greater or less than a given threshold calculated from the derived LTNSTD. Our data mining approach is successfully applied to
the complete genome of Mycoplasma genitalium (M. gen) and discovers these statistical extremes in the genome. By comparisons with the
two scores computed from randomly shuffled sequences of the entire M. gen genome, our results demonstrate that the UFRs in the M. gen
sequence are not selected by chance. These UFRs may imply an important structure role involved in their sequence information. © 2002

Elsevier Science B.V. All rights reserved.
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1. Introduction

Complete genomic sequence data are being accumulated
at an unprecedented pace. A wide variety of computational
methods for analyzing genomic sequences have been devel-
oped [1,2]. Most of the problems in these methods are essen-
tially statistical. Computational analyses of the distinct
sequence pattern can help to understand the structure and
function of genomic sequences. The discovery of biological
knowledge from sequence data consisting of bases A, C, G,
T/U in biological databases, such as Genbank, is especially
important in a post-genomics age.

RNA is a single-stranded conformationally polymorphic
macromolecule with its nucleotide sequence identical to that
of one of the DNA strands except for a base replacement of
T to U. The RNA sequence often folds back on itself
between complementary segments to form various local
structures guided by Watson—Crick rules. In addition to
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the Watson—Crick A-U and G-C base pairs, wobble G—
U base pairs also contribute to the thermodynamic stability
of an RNA structure. It has been demonstrated that some
structures folded by local RNA segments are functional
elements of the control for gene regulations in different
levels [3,4]. These functional elements are often closely
associated with unusual folding regions (UFRs) where the
folding free energy of the UFR is significantly lower than
that expected by chance [5—12]. The development of an
efficient data mining approach to extract these potentially
functional structured elements in the sequence database is
highly desirable.

Knowledge discovery of functional structured elements in
a genomic sequence is an important step to reach our goal
from genome data to biological knowledge. The thermody-
namic stability of an RNA/DNA fragment in the genome is
often measured by the free energy of the formation of the
folded RNA/DNA segment. Based on accumulated data
[3,4,13], UFRs in an RNA sequence are assessed by the
two z-scores, significant score (SIGSCR) and stability
score (STBSCR) [13,14]. SIGSCR signifies the difference
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of thermodynamic stability between a local, natural RNA
fragment and the average of its randomly shuffled
sequences. Similarly, STBSCR indicates the difference of
the stability between a specific fragment at a given place and
the average from all other fragments of the same size in the
sequence. As an example of our data mining, we analyze the
complete genome sequence of Mycoplasma genitalium (M.
gen).

Our data mining approach consists of three steps. In the
first stage, we compute SIGSCR and STBSCR by sliding a
fixed window with a step of one base along the sequence
from the start to end position. Our statistical analysis shows
that the distributions of the two z-scores in the sequence do
not follow a simple normal distribution. In order to obtain
useful information from an extraordinarily large number of
sample observations in the analysis, we have to derive a
reliable statistical model to describe the distributions of
the two z-scores. In the second step we develop a linearly
transformed non-central Student’s t statistical model to
delineate the distributions of SIGSCR and STBSCR in the
entire genomic sequence by means of a non-central
Student’s t distribution theory [15]. Statistical tests show
that the linearly transformed non-central Student’s t distri-
bution (LTNSTD) is a good statistical model to describe the
distributions of the two scores computed in the genome. In
the last step, the significant UFRs that are either much more
stable or unstable than expected by chance are discovered
based on the derived, well-fitted LTNSTD.

As a comparison, we also compute the distributions of
SIGSCR and STBSCR in the randomly shuffled sequence of
the complete M. gen genome. Our results further demon-
strate that the statistical extremes of UFRs are not selected
by chance in M. gen. The UFRs in the genome may imply
the biological functions of the primary sequence data and
provide useful information in further searching for func-
tional structured elements involved in the control of regu-
latory genes [5—12].

2. Mathematical background
2.1. SIGSCR and STBSCR of a folding segment

The quality of a local structure in a DNA/RNA sequence
is often evaluated by the thermodynamic stability of the
structured segment. The greater the free energy of the
formation of the structure in negative numbers, the more
stable the folded structure of a fragment. In this study, the
biological information of such structured fragments in an
RNA sequence is evaluated by SIGSCR and STBSCR of a
local segment. SIGSCR and STBSCR are a standard z-score
and given by

SIGSCR = (E — E,)/std,
and

STBSCR = (E — E,)/std,,

where E is the folded lowest free energy computed from a
local segment in the sequence, E; is the sample mean and
std, is the sample standard deviation of the lowest free ener-
gies computed from folding a large number of randomly
shuffled segments of the same size and same base composi-
tions as the local segment. Similarly, E,, and std,, are the
sample mean and standard deviation of the lowest free ener-
gies obtained by folding all segments of the same size that
are generated by taking successive, overlapping, fixed
length segments stepped one base at a time from the start
to end position of the sequence [13,14].

2.2. Linearly transformed non-central Student’s t
distribution

The non-central Student’s t distribution (NSTD) is an
asymmetric continuous distribution with range (—oo.
+00). It has two parameters [15]: the degree of freedom, f
(a positive integer); and the non-centrality parameter, 6 (a
real number). Its probability density function (PDF) [16] can
be expressed as
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Let the observed data, SIGSCR and STBSCR be {y,
1 =i =n}. Consider a linear transformation:
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Let x;, | =i = n be distributed as an NSTD ¢, whose degree
of freedom is f and non-centrality parameter is 6. For a given
degree of freedom f, we estimate the parameters a, b and &
by assuming the sample mean, sample variance and sample
coefficient of skewness (k) of variables x; (1 =i =<n) are
equal to the mean, variance and coefficient of skewness of
the NSTD, that are shown in the following three equations
[15,23]:
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Table 1

Statistics for significance score (SIGSCR) and stability score (STBSCR) computed by sliding the window of 100, 300 and 500 bp along the complete
Mpycoplasma genitalium (M. gen) genome (strain G37). (The random samples are selected from the corresponding, complete data of samples computed by
three fixed windows of 100, 300 and 500 bases. The distance between any two observations in the random sample is equal to or greater than 100 bases. There
are three samples for complete SIGSCR data and STBSCR data. There are also three random samples for the randomly selected SIGSCR and STBSCR data)

Window size (bp) Sample SIGSCR STBSCR
Type Size (N) Mean Std Skewness Mean Std Skewness

100 Complete 579,975 —0.599 1.124 —0.558 —0.000 1.000 —0.607
100 Random 5000 —0.597 1.127 —0.488 0.001 1.001 —0.633
300 Complete 579,775 —1.397 1.307 —0.399 —0.000 1.000 —0.748
300 Random 5000 —1.403 1.295 —0.619 —0.001 0.999 —0.761
500 Complete 579,575 —2.036 1.609 —1.162 —0.000 1.000 —0.854
500 Random 5000 —2.038 1.594 —1.170 0.003 0.999 —0.846

- Wg(f)8[3+(f 2)82((f—3)g () - ]f ol

f - 3)[1 + 52(1 2(f))]
™

where y and s, are the sample mean and sample standard
deviation of variables y; that are observations in the sample
of data SIGSCR or STBSCR.

3. First step of our data mining: computing SIGSCR and
STBSCR

In the first step of our data mining approach, SIGSCR and
STBSCR in a sequence are computed by the program
SIGSTB, a modified version of SEGFOLD [14], using
fixed windows of 100, 300 and 500 bases. The program
SIGSTB first computes E, E,, std, and SIGSCR for the frag-
ment with the same size as the selected window from the
beginning of the sequence. The lowest free energy E is
computed by folding the segment using the dynamic
programming algorithm [17] and Turner energy rules [18].
E, and std, of the fragment are calculated from the tabulated
coefficients based on the segment length and its base
compositions, if the percentage of base G + C in the
segment is less than 75% and each base percentage is larger
than 3% [21]. Otherwise, the mean energy E, and its stan-
dard deviation std, are computed by folding 100 randomly
shuffled sequences of the fragment by the dynamic program-
ming algorithm [17]. The computation is continued by slid-
ing the fixed window one base at a time until the window
reaches the end position of the sequence. Next, E,, and std,,
are calculated from those E values computed for all
segments as described above. Finally, STBSCR values for
each segment in the sequence are calculated.

Using the three fixed windows of 100, 300 and 500 bases
we collect three samples for data SIGSCR and three samples
for STBSCR from M. gen. In the computation, the M. gen.
sequence of 580,074 nucleotides is divided into two over-
lapping sequences of 1-300,600 and 300,001-580,074

because of the computing limitation of the program
SIGSTB. Certainly, the lowest free energies could also be
computed by other dynamic programming algorithms such
as those developed by Elloumi [19,20]. It has been demon-
strated from our extensive tests [21] that the computed E,
and std, from the empirical formulas are in good agreement
with those computed from a Monte Carlo simulation of 300
randomly shuffled sequences.

4. Second step of our data mining: deriving a LTNSTD
for SIGSCR and STBSCR

Since neighboring scores in the six samples are possibly
not fully independent, we also take a random sample with
size of 5000 observations (SIGSCR or STBSCR) for each of
the six samples so that the distance between any two neigh-
boring observations in the randomly selected sample is
equal to or larger than 100 bases. We compute the sample
mean (¥), sample standard deviation (s,) and sample coeffi-
cient of skewness (k) for data SIGSCR and STBSCR in
these randomly selected samples. For a given degree of
freedom f and parameter k, we solve Eq. (7) to obtain &,
then substitute the value of 0 into Eq. (6) to get a and b from
Eq. (5). Thus, we derive a theoretical LTNSTD to fit the
score data for each of these samples. We can derive a series
of theoretical LTNSTDs to fit these score data for each
sample for a given f from 6 to 20. For these derived
LTNSTDs, the Kolmogorov—Smirnov (KS) test [22] is
then used to verify the goodness of fit between a theoretical
cumulative distribution function and an empirical distribu-
tion function for each random sample. As a result, we are
able to choose a well-fitted LTNSTD as a theoretical distri-
bution for each random sample.

5. Third step of our data mining: discoveries of UFRs

For a continuous distribution of a random variable x, we
define the quantile [24] g, with probability « in the distri-
bution as P(x = q,) = «. For a given probability « in the
derived theoretical cumulative distribution, F(x; f, 8) of
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Fig. 1. Empirical probability density functions (rows 1 and 3) and empirical distribution functions (rows 2 and 4) plotted together with linearly transformed
theoretical probability density functions (rows 1 and 3) and cumulative distribution functions (rows 2 and 4) of non-central t distribution. The SIGSCR data
computed in M. gen are shown in rows 1 and 2 and STBSCR data are shown in rows 3 and 4. The two scores computed by sliding the fixed windows of 100,
300 and 500 bases are shown in the left, middle and right, respectively. The empirical step functions are plotted with step size 0.2, and the theoretical curves
with the degree of freedom f= 8 are drawn with a jagged line, and those with f= 10 are drawn with a smooth line.

Table 2
Analysis of variance for significance score (SIGSCR) and stability score (STBSCR) computed by sliding the window of 100, 300 and 500 nt along the complete
Mpycoplasma genitalium (M. gen) genome (strain G37)

Region (a)Segment counts and the means of SIGSCR and STBSCR in M. gen genome

‘Window of 100 nt Window of 300 nt Window of 500 nt

N (Counts) SIGSCR STBSCR N (Counts) SIGSCR STBSCR N (Counts) SIGSCR STBSCR
Noncoding 35,214 —0.744 —-0.151 25513 —1.431 —0.532 21,317 —-1.677 —0.702
Protein 501,941 —0.575 —0.024 45,8017 —1.348 0.057 416,168 —1.970 0.071
rRNA 4350 —0.792 —1.707 3655 —1.258 —2.276 3255 —1421 —2554
Source of variation D.F. Sum of squares Mean squares F-value and probability (tail)

SIGSCR STBSCR SIGSCR STBSCR SIGSCR STBSCR

(b) ANOVA table for the two scores distributed in M. gen genome (data from window of 100 nt)
Between groups 2 1126 13,772 563 6886 457.2 (0.0000) 7314 (0.0000)
Within groups 541,502 666,697 509,770 1.2312 0.9414
(c) ANOVA table for the two scores distributed in M. gen genome (data from window of 300 nt)
Between groups 2 201.6 27,603 100.8 13,801 63.38 (0.0000) 15,662 (0.0000)
Within groups 487,182 774,863 429,305 1.5905 0.8812
(d) ANOVA table for the two scores distributed in M. gen genome (data from window of 500 nt)
Between groups 2 2657 33,764 1328 16,882 593.9 (0.0000) 19,626 (0.0000)

Within groups 440,737 985,664 379,122 2.2363 0.8602
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Table 3

Extremes of unusual folding regions (UFRs) detected in M. gen (G37) genome. (Eight types of UFR (types 1—8) are defined based on the computed SIGSCR
and/or STBSCR as listed in the second and third columns. Numbers listed in parentheses indicate the probabilities of the eight types of UFR occurring in the
complete M. gen sequence according to the derived linearly transformed theoretical non-central t distributions. Numbers listed in the right three columns are
the counts of these distinct UFRs that are involved entirely within the protein coding, RNA gene, and non-coding regions in the genome)

Type SIGSCR (P-value) STBSCR (P-value) Protein RNA Non-coding
(a) UFR counts detected by sliding a window of 100 nt along M. gen. (G37)

1 = —4.75 (0.0025) 547 2 275
2 =2.24 (0.0025) 370 - 99
3 = —3.74 (0.0025) 397 284 111
4 = 2.48 (0.0025) 504 - 92
5 = —4.75 (0.0025) = —2.81 (0.01) 314 2 111
6 =2.24 (0.0025) =2.05(0.01) 203 - 23
7 = —3.73 (0.01) = —3.74 (0.0025) 251 34 53
8 =1.74 (0.01) =2.48 (0.0025) 164 - 33
(b) UFR counts detected by sliding a window of 300 nt along M. gen (G37)

1 = —5.91 (0.0025) 1048 - 279
2 = 1.94 (0.0025) 458 - 44
3 = —3.96 (0.0025) 151 168 42
4 =2.38 (0.0025) 703 - 8
5 = —5.91 (0.0025) = -2.91 (0.01) 107 - 84
6 = 1.94 (0.0025) =1.98 (0.01) 208 - -

7 = —4.89 (0.01) = —3.96 (0.0025) 99 12 20
8 =1.37 (0.01) =2.38 (0.0025) 273 - -

LTNSTD we calculate the quantile g, by solving the equa-
tion ¢, =F(x; f, 8), where Fl(x; f, 8) is the inverse
function of F(x; f, 8). In practice, the g, is computed by
the function NCTINV in the statistical toolbox of MATLAB
software. In general, we calculate quantile, ¢,, with prob-
ability o = 0.01, 0.005, 0.0025 and 0.001 in the derived
LTNSTD. For a desired value of a (a very small value),
we can search for those UFRs in the sequence whose
SIGSCR and/or STBSCR values are greater or less than
the selected g,. In this study, we define eight types of
UFR termed types 1-8. For example, if SIGSCR = —4.75,
then the local segment of 100 bases is defined as the UFR of
type 1. If STBSCR = —3.74 the local segment of 100 bases
is defined as the UFR of type 2. The probabilities « of the
type 1 and 2 UFRs occurring in the M. gen genome are less
than or equal to 0.0025 by chance.

6. Results and discussion
6.1. Statistics of SIGSCR and STBSCR in the M. gen genome

Statistics of local thermodynamic stability in the M. gen
sequence are listed in Table 1. It is clear that the distribu-
tions of SIGSCR and STBSCR computed by windows of
100, 300 and 500 bases are asymmetric in the M. gen
sequence. These distributions do not follow a normal distri-
bution because of large skewness in the samples (see Fig. 1).
We also computed the means of SIGSCR and STBSCR in
the protein coding, RNA gene and non coding regions by
means of the known gene structures of M. gen listed in
Genbank (see Table 2a). The means of STBSCR in the
domain of RNA genes computed by windows of 100, 300

and 500 bases were —1.707, —2.276 and —2.554, respec-
tively. On average, the RNA gene domain was the most
thermodynamically stable region among the three different
domains. We also observed that the protein coding sequence
was the least stable on average. Analyses of variance
(ANOVA) for these data indicate that the thermodynamic
stability of the local segment within the three different
domains is remarkably different from each other (see
Table 2b—d). The observed bias toward more thermodyna-
mically stable folding segments in the RNA genes is very
statistically significant by ANOVA test.

6.2. Non-central t distributions of SIGSCR and STBSCR in
M. gen

Our data indicate that the errors between the derived
theoretical cumulative distribution function and empirical
distribution function are not sensitive to f values for the
random samples. The derived two LTNSTDs of data
SIGSCR and STBSCR show the acceptance limit with the
significance level 0.05 or above for f from 10 to 20 for
the two scores computed by a window of 100 bases. For
other samples, we obtained similar results. The linearly
transformed theoretical probability density functions
and cumulative distribution functions of non-central t
distributions for SIGSCR and STBSCR derived by f=8
and 10 are shown in Fig. 1. In the plots, the empirical distri-
bution functions are all fitted well using the derived cumu-
lative distribution functions. Our results show that the
LTNSTD is a good statistical model to describe the distri-
bution of SIGSCR and STBSCR computed in the M. gen
sequence.
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Fig. 2. Significance score (SIGSCR) of thermodynamic stability for the local segment of 300 bases computed in the artificial (top) and native M. gen genome
(bottom). The artificial genome sequence was produced by randomly shuffling the complete M. gen genome. The horizontal axis represents SIGSCR and
vertical axis represents the log-scale of the occurrence number (base 10 logarithm) of each SIGSCR in the plot.

6.3. Statistical extremes of UFR in the sequence

Based on values of SIGSCR and STBSCR, we discover
eight types of UFR (types 1-8) in the M. gen genome (see
Table 3). Among them, type 5 UFR is defined if its SIGSCR
is less than or equal to —4.75 and its STBSCR is less than or
equal to —2.81. Thus, the type 5 UFR represents the
segment sequence that is significantly more stable than
both their randomly shuffled sequences and other fragments
of the same size in the complete genome. The extremely
stable type 5 UFRs often provide useful information for
searching for biologically functional elements in the bacter-
iophage [9] and eukaryotic mRNAs [5,7,8,10—-12]. The
UFRs detected in the M. gen sequence by the window
sizes of 100 and 300 bases are summarized in Table 3.
The detailed data about these detected UFRs are available
on request from the authors.

To obtain a clear idea about what difference of the statis-
tical extremes are selected in the native genome and its
corresponding, randomly shuffled genome sequence, we
applied the same approach to the artificial sequence of the
randomly shuffled genome using a fixed window of 300
bases. The comparisons of the SIGSCR data computed in
the native and artificial samples are shown in Figs. 2 and 3.
Our results indicate that there is not a simple relation
between SIGSCR and the percentage of base G + C in the

fragment. We consider that SIGSCR in M. gen is strongly
dependent on the distinct sequence pattern in the local
segment. It also indicates that the range of the SIGSCR
value computed in the artificial sequence is from —8.42 to
4.61. Among them, only 18 out of the 579,775 segments
have SIGSCR that is less than or equal to —7.75. However,
we detected 241 such extreme UFRs in the native M. gen
genome. The probability of these extreme UFRs in M. gen
is about 0.0005 or less. It is clear that the UFRs extracted
from the natural genome are not selected by random. It
may imply some biological functions involved in the
distinct sequence pattern, where the folded structure of
RNA or DNA segments plays an important role in their
functions.

The program SIGSTB was implemented in Fortran 77 on
a Silicon Graphics (SGI) Computer with IRIX 6.5. It has
also been executed on a Compaq/DEC Alpha 8400/625
EV56 with Digital Unix. Our method for calculating
SIGSCR and STBSCR requires O(w’N) computation time,
where w is the window size and N is the sequence length.
For example, it took 18,788 CPU seconds on a SGI Octane
computer for calculating two scores in the sequence 1-
300,600 of M. genusing a fixed window of 300 bases. All
statistical analyses in this study were performed using the
Statistical Toolbox of MATLAB software package (http://
www.mathworks.com).
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Fig. 3. Relationships between SIGSCR and base compositions of G + C computed from the local segment of 300 bases in the artificial (top) and natural M. gen
genome (bottom). The horizontal axis represents SIGSCR and vertical axis represents the percentage of base G + C in the local segment. The SIGSCR and
percentage of base G + C were computed by sliding the fixed window of 300 bases stepped one base at a time along the sequences.

7. Conclusions and perspectives

In this study, we present a data mining approach to
discover UFRs in the M. gen genome sequence. At the
first stage of the approach, we calculate two z-scores of
SIGSCR and STBSCR in the sequence. Next, we derive a
LTNSTD statistical model to describe the distributions of
the two scores in the M. gen sequence. Finally, we discover
the UFRs in M. gen based on the derived LTNSTDs, whose
SIGSCR and STBSCR values are significantly deviated
from their sample means. The approach is generally applic-
able for other genomes. For instance, we also computed the
two scores in other microbial genomes, such as Helicobac-
ter pylori strains 26695 and J99, and Mycoplasma pneumo-
nia. The distributions of the two scores in these sequences
are well represented by a LTNSTD. Statistical extremes of
UFRs can be confidently assessed based on the derived,
theoretical LTNSTD. The precise locations for these
UFRs can be further inferred by an extended search
(SEGFOLD) in which the window size is systematically
changed in the corresponding extended regions. These
detected UFRs in M. gen and others can be suggested as
candidate sites for further experimental study in searching
gene regulatory elements and potential target sequences of

long-chain antisense RNAs. Our data mining approach in
the genomic sequence is particularly useful for antisense
RNA therapeutics and the targeting of RNA-binding drugs
against pathogenic bacteria.
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